Fabryka Taśm Transporterowych Wolbrom S. A.

TERMO-FLEX AND NORMAL-FLEX RUBBER CONVEYOR BELTS WITH FLEXIMAT METAL MESH

Application

The belts with Fleximat type metal mesh are designed to convey materials of various grain sizes, especially where little elongation is required while the belt is exposed to tearing and longitudinal cuts.

Depending on the cover rubber used , the following belts are produced:

- for general purpose - NORMAL FLEX
- resistant to temperatures $\mathrm{T} 120^{\circ} \mathrm{C}, \mathrm{T} 150^{\circ} \mathrm{C}$ i T200 ${ }^{\circ} \mathrm{C}$
- TERMO FLEX.

NORMAL FLEX belts are used to transport of sharp-edged materials on long conveyor lines and at high inclination angles, e.g. in open pit mining, aggregate mining industry, etc.
TERMO FLEX belts, on the other hand, can convey materials whose temperature is up to 200 OC. These belts are used in metallurgical and cement industry and for the transport of hot ash, slag, moulding sand, etc.

Construction of the belt

The basic element of the belt is a rubberized carcass made of brass-plated steel cords constituing the warp and weft cords arranged transversely.
Due the construction of the Fleximat metal mesh, two kinds of belts are distinguished:
IW - with weft cords arranged on one side of the warp
SW - with weft cords arranged alternately on both sides of the warp cords
Construction of the belt, requirements and test methods for rubber belts with metal mesh are specified in the Technical Conditions WT-2 / XX; WT-3 / XX and WT-24 / XX 1
${ }^{1}$ Current edition of the Technical Conditions

Properties

The belts based on theFleximat mesh are characterized by:

- low elongation, not exceeding $0,25 \%$ at the load equal to 10% of nominal strength;
- high impact resistance;
- high adhesion of the rubber to the carcass;
- smaller diameter of conveyor drums than for fabric-rubber belts of the same type;
- high resistance to longitudinal cuts;
- very high transverse flexibility - the ability to create a trough up to 45\%;
- possibility of using garland roller sets

Durable matking of the belts

To be agreed with the Customer or as a standard on the carrying cover of the belt, in the distance of approx. $5[\mathrm{~m}]$ from the beginning of the belt, $50 \div 100[\mathrm{~mm}]$ from the belt edges, at intervals of $10 \div 20[\mathrm{~m}]$ at one or both edges of the belt (depending on width of the belt), a permanent mark in the form of a relief imprint in rubber is placed, containing at least the manufacturer's name, type of the belt, thickness of covers, cover class, belt number and the last two digits of the year of production.

Packing

As a standard, the belt is wound into a coil on a metal drum with a diameter of $500[\mathrm{~mm}]$ with a square hole with a side of 190 [mm]. Rolled belts are secured against unwinding during transport by clipping with polypropylene tape.

FTT can accept individual orders that meet the Customers' wishes regarding the selection and delivery of the belts with cover thicknesses other than those listed in the table.

Tabela 1. Standardowy typoszereg taśm z siatką metalową FLEXIMAT

Typ taśmy 1.NORMAL - FLEX 2.TERMO-FLEX Wytrzymałość taśmy podłużna (kN / m)	Grubość rdzenia [mm]		Grubość [mm]			Szerokość (mm) ${ }^{3}$					
	IW	SW	Okładek gumowych/ min max 2	~Całkowita taśmy min max		800	1000	1200	1400	1600	1800
				IW	SW						
500	3,2	4,7	$\begin{gathered} 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 13,2 \\ & 21,2 \end{aligned}$	$\begin{aligned} & 14,7 \\ & 22,7 \end{aligned}$	x	x	x	x	x	x
630	3,2	4,7	$\begin{gathered} 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 13,2 \\ & 21,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14,7 \\ & 22,7 \\ & \hline \end{aligned}$	x	x	x	x	x	x
800	4,5	5,4	$\begin{gathered} \hline 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 14,5 \\ & 22,5 \end{aligned}$	$\begin{aligned} & 15,4 \\ & 23,4 \end{aligned}$		x	x	x	x	x
1000	4,5	5,4	$\begin{gathered} \hline 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 14,5 \\ & 22,5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 15,4 \\ & 23,4 \\ & \hline \end{aligned}$		x	x	x	x	x
1250	6,0	7,1	$\begin{gathered} 6+4 \\ 12+6 \end{gathered}$	$\begin{array}{r} 16,0 \\ 24,0 \\ \hline \end{array}$	$\begin{aligned} & 17,1 \\ & 25,1 \\ & \hline \end{aligned}$		x	x	x	x	x
1400	6,0	7,1	$\begin{gathered} \hline 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 16,0 \\ & 24,0 \\ & \hline \end{aligned}$	$\begin{aligned} & 17,1 \\ & 25,1 \\ & \hline \end{aligned}$		x	x	x	x	x
1600	6,0	7,1	$\begin{gathered} 6+4 \\ 12+6 \end{gathered}$	$\begin{aligned} & 16,0 \\ & 24,0 \end{aligned}$	$\begin{aligned} & \hline 17,1 \\ & 25,1 \\ & \hline \end{aligned}$			x	x	x	x
1800	-	7,1	$\begin{gathered} \hline 6+4 \\ 12+6 \end{gathered}$	-	$\begin{aligned} & \hline 17,1 \\ & 25,1 \\ & \hline \end{aligned}$			x	x	x	x
2000	-	7,1	$\begin{gathered} 6+4 \\ 12+6 \end{gathered}$	-	$\begin{aligned} & 17,1 \\ & 25,1 \end{aligned}$			x	x	x	x
Zalecana długość odcinków taśmy 100, 150, 200 m [+2/-0\%]											

${ }^{2}$ Odchylenia grubości okładek +1 : $-0,5 \mathrm{~mm}$
${ }^{3}$ Szerokości taśm inne niż zawarte w Tabeli 1 do uzgodnienia z producentem
Tabela 2. Właściwości fizyko-mechaniczne gumy okładkowej taśm z siatką metalową NORMAL FLEX.

Parametr		Jednostka	Wymagania dla gumy okładkowej									Metoda badania ${ }^{4}$	
		Wg. DIN 22131	PN-EN ISO 15236-1										
		X	Y	Y60 ${ }^{5}$	W	W60 ${ }^{5}$	H	D60 ${ }^{5}$	D	L			
Wytrzymałość na rozciąganie, min.	TS		[MPa]	25	20	20	18	18	24	20	18	15	PN-ISO 37 (próbka typu 2)
Wydłużenie w chwili zerwania, min.	E_{b}		[\%]	450	400	450	400	400	450	450	400	400	PN-ISO 37 (próbka typu 2)
Odporność na ścieranie, max.	-	[mm^{3}]	120	150	60	90	60	120	60	100	90	PN-ISO 4649 (metoda A)	
Odporność na działanie ciepła, w powietrzu, w warunkach: $+70\left[{ }^{\circ} \mathrm{C}\right] \times 168[\mathrm{~h}], \text { max. }$	$\Delta T S$ ΔE_{b}	$\begin{aligned} & \text { [\%] } \\ & \text { [\%] } \end{aligned}$					$\begin{aligned} & -25 \\ & -25 \end{aligned}$					$\begin{gathered} \text { PN-ISO } 188 \text { (metoda B) } \\ \text { PN-ISO } 37 \text { (próbka typu 2) } \end{gathered}$	

${ }^{4}$ Badania prowadzone wg aktualnych wydań norm
${ }^{5}$ D60; Y60, W60 - okładka o podwyższonym parametrze odporności na ścieranie

Tabela 3. Właściwości fizyko-mechaniczne gumy okładkowej taśm TERMO FLEX.

Parametr		Jednostka	Wymagania dla gumy okładkowej taśm odpornych na podwyższoną temperaturę			Metoda badania ${ }^{4}$	
		WT-13/					
		T120	T150	T200			
Wytrzymałość na rozciąganie, min.	TS		[MPa]	15	15	12	PN-ISO 37 (próbka typu 2)
Wydłużenie w chwili zerwania, min.	E_{6}		[\%]	350	350	400	PN-ISO 37 (próbka typu 2)
Odporność na ścieranie, max.	-	[mm^{3}]	150	150	150	PN-ISO 4649 (metoda A)	
+100 [$\left.{ }^{\mathrm{C}} \mathrm{C}\right] \times 72$ [h], max.	$\begin{aligned} & \Delta \mathrm{TS} \\ & \Delta \mathrm{E}_{\mathrm{b}} \end{aligned}$	$\begin{aligned} & \text { [\%] } \\ & \text { [\%] } \end{aligned}$	$\begin{aligned} & \pm 40 \\ & \pm 60 \end{aligned}$			PN-ISO 188 (metoda B) PN-ISO 37 (próbka typu 2)	
+125 [${ }^{\text {C }}$] x 72 [h], max.	$\begin{aligned} & \Delta T S \\ & \Delta E_{b} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { [\%] } \\ & \text { [\%] } \\ & \hline \end{aligned}$		$\begin{array}{r} \pm 45 \\ \pm 65 \\ \hline \end{array}$		$\begin{aligned} & \text { PN-ISO } 188 \text { (metoda B) } \\ & \text { PN-ISO } 37 \text { (próbka typu 2) } \end{aligned}$	
+125 [$\left.{ }^{\circ} \mathrm{C}\right] \times 168$ [h], min.	$\begin{aligned} & \text { TS } \\ & E_{b} \\ & \hline \end{aligned}$	[Mpa] [\%]			$\begin{gathered} 10 \\ 300 \end{gathered}$	PN-ISO 188 (metoda B) PN-ISO 37 (próbka typu 2)	

${ }^{4}$ Badania prowadzone wg aktualnych wydań norm

Fabryka Taśm Transporterowych Wolbrom S. A. ul. 1 Maja 100, 32-340 Wolbrom e-mail: ftt@fttwolbrom.com.pl www.fttwolbrom.com.pl

